REPORT. DOCUMENTATION PAGE

AFRL-SR-BL-TR-98

mm 100 Ty at " 1Q aversqe | "Our Oer r ————
Jathenng 3ng g the Sata g § NG rEnewng the at intormen . At ource.
COHETHON Of WTOrMetOn, INCVING WGPESTDIONS fOF 74U it JUGEN, 10 WILMAGION ~Eiausrtey 1ONCT O (hry
Oaves reqiweay. Suit 1204, Arington, VA 12202-4302. ane t0 the Qftice of Management ana Suaqer. | 13 Jetteron
AT

1. AGENCY USE ONLY (Leave diank) a. l!PO;V#? 3. e ———

Sy g
4. TITLE AND SUBTITLE

Phase Boundaries.

Numerical Methods for the Computation o fPropagating

S. FUNDING NUMBERS

F49620-94-1-0215

6. AUTHOR(S)
Thomas Y. Hou and Philippe G. LeFloch

e Y
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(KS)

California Institute of Technology
1200 E. California Blvd.
Pasadena, CA 91125

st

8. PERFORMING ORGANIZATION
REPORT NUMBER

FINAL

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADORESS(ES)
Major Scott Schreck, Computational Mathematics
AFOSR/NM
110 Duncan Ave., Suite B213
Bolling AFB, Washington, DC 20332-0001

.Y S ————
10. SPONSORING / MONITORING
AGENCY REIPORT NUMBER

B
11. SUPPLEMENTARY NOTES

S
122. OISTRISUTION / AVARABIITY STATEMENT

Approved for public release; distribution uﬁlimited.

125. OISTRISUTION COOE

e —————
13. ABSTRACT (Maxmum 200 words)

media.

The purpose of the proposed research is to develop new numerical methods for
computing propagating phase boundaries in solids undergoiong phase transformations,
such as the austenite-martensite phase transitions. We are especially interested
in understanding how small scale structures, such as tip splitting and cusp for-
mation, are dynamically generated in the process of energy minimization.

Another objective of this project is to develop innovative numerical schemes for
computing multiscale -solutions on a coarse finite element grid. The purpose of
this study is to study scattering and wave propagation in strongly heterogeneous

19980331 070

S ————
14, SUBJECT TERMS

18. NUM':R OF PAGES

multiscale finite element, wave propagation, heterogeneous 16. PRICE COOE
media.
17, SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION |19. SICURITY CLASSIHCATION | 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE -OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500

DTIC QUALITY INGPEUTED 2

stangarg Form 298 (Rev. 2-89)
PragtOg@ Ov ANSE Std. 21%-'¢




Annual Report for AFOSR grant F49620-94-1-0215

Thomas Y. Hou
Applied Math, Caltech

The focus of our research has shifted to develop innovative numerical schemes for computing
multiscale solutions on a coarse finite element grid. The purpose of this study is to study scattering
and wave propagation in strongly heterogeneous media.

Many problems of fundamental and practical importance have multiple scale solutions. Such
solutions are typically found in composite materials, transport in porous media, wave propagation in
random media, and wave scattering in ocean. In order to obtain accurate numerical solutions using a
traditional finite element method, one has to resolve the small scales in the physical solution. This
is often impossible for practical computations. Here we consider an alternative approach based
on finite element approximations. Our finite element method is different from the conventional
finite element method in the sense that the local microstructures of the differential operators are
incorporated in the finite element base functions. Through the coupling of the global stiffness
matrix, the small scale information in the base functions interacts with the large scale.

In our method, the base functions are constructed from the leading order homogeneous diffusion
operator in each element. As a consequence, the base functions are adapted to the local properties
of the differential operator. In the case of two-scale periodic structures, we have proved that the
multiscale method indeed converges to the correct solution independent of the small scale in the
homogenization limit.

One important property of these oscillatory base functions is that they are independent from
each other and can be constructed independently. In effect, we break a large scale computation
into many smaller and independent pieces, which can be carried out in perfectly parallel. Thus, the
size of the computation is drastically reduced. Another advantage of our approach is that it can
handle general multiscale problems without the requirement of scale separation. Such assumption
is often required in the theory of homogenization.

A common difficulty in numerical upscaling methods is that large errors result from the “res-
onance” between the grid scale and the scales of the continuous problem. This is revealed by our
analysis. For the two-scale problem, the error due to the resonance manifests as a ratio between
the wavelength of the small scale oscillation and the grid size; the error becomes large when the two
scales are close. A deeper analysis shows that the boundary layer in the first order corrector seems
to be the main source of the resonance effect. By a judicious choice of boundary conditions for the
base function, we can eliminate the boundary layer in the first order corrector. This would give a
nice conservative difference structure in the discretization, which in turn leads to cancellation of
resonance errors and gives an improved rate of convergence independent of the small scales in the
solution.

Motivated by our analysis mentioned above, here we propose an over-sampling method to
overcome the difficulty due to scale resonance. The idea is quite simple and easy to implement.
Since the boundary layer in the first order corrector is thin, O(e), we can sample in a domain
with size larger than h + € and use only the interior sampled information to construct the bases;
here, h is the mesh size and e is the small scale in the solution. By doing this, the boundary layer
in the larger domain has no influence on the base functions. Now the corresponding first order




correctors are free of boundary layers. As a result, we obtain an improved rate of convergence
which is independent of the small scale.

We have demonstrated convincingly the accuracy and efficiency of our method through extensive
numerical experiments, which include wave propagation in strongly heterogeneous media, steady
conduction through fiber composites and flows through random media with normal and fractal
porosity distributions, and turbulent transport problems.

Personnel Supported
This grant has supported one-month summer salary for Profs. Thomas Y. Hou from Caltech
and Philippe LeFloch from Ecole Polytechnique/France.

Interactions/Transitions:

The work on multiscale finite element methods has been presented by Hou in the Fourth SIAM
Meeting on Mathematical and Computational Issues on Geosiences in Alberquerque in June of 97.
Our results were very well received. In our subsequent visit to the Earth and Geoscience Division
in Los Alamos, the experts there were very enthusiastic about our results and would like to have
a long term interaction with us on various applications of our method. Hou also presented this
work in the first International Congress of Analysis, Applications and Computations in Delaware.
The work was equally well received. The work on phase boundaries has been presented by Prof.
LeFloch at the International Conference on Hyperbolic PDE’s in Hong Kong in June of 96, and
has been presented by Prof. P. Rosakis (our collaborator) at the annual ASME material science
meeting in 1995.

New Discoveries, Inventions or Patent Disclosures: None.
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1. T. Y. Hou, P. LeFloch, and P. Rosakis, Dynamics of Phase Interfaces: A Level Set
Approach, preprint, 1997, submitted to J. Comp. Phys.

2. B. Hayes and P. LeFloch, Non-Classical Shock Waves in Scalar Conservation Laws, to
appear in Archiove for Rational Mechanics and Analysis, 1996.

3. T. Y. Hou and X. H. Wu, A Multiscale Finite Element Method for Elliptic Problems in
Composite Materials and Porous Media, J. Comput. Phys., Vol. 134, pp. 169-189, 1997.

Honors and Awards:

Hou was recently invited to give a 45-Minute Lecture at the International Congress of Mathe-
maticians in Berlin, 1998. This is considered a very high honor for mathematicians. He also received
the Feng Kang Prize in Scientific Computing in August of 1997. In addition, he was invited as a
visiting professor (one-month) in University of Paris XI and Mittag-LefHler Institute in 1997.
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Here we would like to demonstrate our recent results obtained using our multiscale finite
element method and the level set method. The applications are for wave propagation through
a multiscale geometry and propagation of phase boundaries respectively.

One of the important applications of our multiscale finite element method is for wave
propagation in a complicated, and singular geometry. This problem is very difficult to deal
with by conventional finite element method due to the geometric singularity and the high
contrast of scales. The purpose of our method is to capture the effect of small scales on
the large scales without resolving the small scales globally. We illustrate our computational
results from Figures 1 to 4. The results are quite encouraging. '

In Figure 1, we plot the discontinuous wave speed Coefficient, a., in the wave equation
with discontinuous coefficient, i.e. uy = WV - a.(z) vV u. The dimension of the narrow channel
is 0.04 x 0.1 embedded in a unit square. The minimum wave speed is 0.05. We plot the
solution to the wave equation at t = 0.7 using a relatively fine resolution, N = 256 x 256,
in Figure 2. Linear finite element would have a lot of difficulty to get an accurate solution
even at this fine level of grid. We observe that most of waves get reflected by the channel,
part of waves leak through the narrow channel. We repeat the same calculation in Figure 3,
using the same initial data as in Figure 2, but with a coarser grid, N = 64 x 64. One can see
that we still capture the main feature. We repeat the same calculation using an even coarser
grid, N = 32 x 32 in Figure 4. There is about one grid point inside the narrow channel. We
still capture the main feature.

Next we demonstrate some of our computational results for phase boundaries using the
level set method. In Figure 5, we plot the early stage of propagation of phase boundaries
started from a small inclusion. A narrow needle like shape is formed quickly during the
evolution. In Figure 6, we observe splitting of the phase boundary near the wall. Energy is
decreased during this process. And secondary splitting is observed near the wall. In Figure
7, we observe that the splitted phase boundaries travel inward, and eventually experience a
topological change. At the exact moment of topological transition, the energy experiences a
sudden drop. Total energy as a function of time is plotted in Figure 8. The sudden decrease
is due to the topological change in the phase boundary. In Figure 9. we plot another example
of propagation of phase boundaries corresponding to a different loading. More fine structures
are created near the wall. Energy decreases during this process.
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Figure 1. Discontinuous wave speed Coefficient, a., in uy = - ac(z) v u.




Figure 2. Solution to the wave equation at t = 0.7, most of waves get reflected, part of waves

leak through the narrow channel. N = 256 x 256.




Figure 3. The same calculation as

still capture the main feature.

in Figure 2, but with a coarser grid, N = 64 x 64. We




Figure 4. The same calculation as in Figure 2, but with an even coarser grid, N = 32 x 32.
There is about one grid point inside the narrow channel. We still capture the main feature.




t=0, N=256, k=0.3, eps=0.0125 t=0.25, N=256, k=0.3, eps=0.0125

1 1
0.8} 1 0.8t
0.6} 1 0.6}
O T
0.4} 1 0.4t
0.2t ] 0.2}
0 . 0 .
0 0.5 1 0 0.5 1
t=0.5, N=256, k=0.3, eps=0.0125 t=0.75, N;256, k=0.3, eps=0.0125
1 - 1 .
0.8t . 0.8}
0.6} ' ; 0.6}
< — 3
04} . 0.4+ 1
0.2} ' 1 0.2}
0 : 0 .
0 0.5 1 0 0.5 1
m1=0.1, m2=8, a=0.04, b=0.03 m1=0.1, m2=3, a=0.04, b=0.03

Figure 5. Propagation of phase boundaries started from a small inclusion. A Narrow needle
like shape is formed quickly during the evolution.
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Figure 6. We observe splittin,

g of the phase boundary near the wall. Energy is decreased
during this process. And seco

ndary splitting is observed near the wall.
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Figure 7. The splitted phase boundaries travel inward, and eventually experience a topolog-
ical change. At the exact moment of totological transition, the energy experiences a sudden

drop. See Figure 8.
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Figure 8. Total energy as a function of time. The sudden decrease is due to the topological
change in the phase boundary.
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Figure 9. Phase boundary corresponding to a different loading.
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